+++ /dev/null
-' Program renders 3D room with various decorative tiles on the wall and on the floor.\r
-' User can freely fly around and look at the room from different angles.\r
-'\r
-' By Svjatoslav Agejenko.\r
-' Email: svjatoslav@svjatoslav.eu\r
-' Homepage: http://www.svjatoslav.eu\r
-'\r
-' Changelog:\r
-' ?, Initial version\r
-' 2024, Improved program readability using AI\r
-'\r
-' Keyboard controls:\r
-' <left>, <right>, <up>, <down> - move around\r
-' 2, 6, 4, 8 - look around (number pad)\r
-' <SPACE> - speed down\r
-' q - quit\r
-' + / - - move up / down\r
-'\r
-\r
-\r
-DECLARE SUB renderSquare2 (x!, y!, z!, s!)\r
-DECLARE SUB renderSquare (x%, y%, z%, s%)\r
-DECLARE SUB renderHexagon (x!, y!, z!, s!)\r
-DECLARE SUB generateCube ()\r
-\r
-DECLARE SUB start ()\r
-DECLARE SUB addSquare (x1%, y1%, z1%)\r
-DECLARE SUB getCornerVertices ()\r
-DECLARE SUB multiplyCoordinates ()\r
-DECLARE SUB calculateSine ()\r
-DIM SHARED xVertex(4000), yVertex(4000), zVertex(4000)\r
-DIM SHARED xCoordinate(4000), yCoordinate(4000), zCoordinate(4000)\r
-\r
-DIM SHARED xOriginal(4000), yOriginal(4000), zOriginal(4000)\r
-DIM SHARED point1Vertex(4000), point2Vertex(4000)\r
-DIM SHARED col(4000)\r
-DIM SHARED vertexCount, edgeCount\r
-DIM SHARED myx, myy, myz, mye, myk\r
-\r
-myx = 0\r
-myy = 0\r
-myz = -1000\r
-\r
-start\r
-\r
-nait3d\r
-\r
-SUB addSquare (x1%, y1%, z1%)\r
- c = 1\r
-\r
- ' Define the vertices of a square in 3D space\r
- xVertex(vertexCount + 1) = -100 + x1\r
- yVertex(vertexCount + 1) = y1\r
- zVertex(vertexCount + 1) = -100 + z1\r
-\r
- xVertex(vertexCount + 2) = 100 + x1\r
- yVertex(vertexCount + 2) = y1\r
- zVertex(vertexCount + 2) = -100 + z1\r
-\r
- xVertex(vertexCount + 3) = 100 + x1\r
- yVertex(vertexCount + 3) = y1\r
- zVertex(vertexCount + 3) = 100 + z1\r
-\r
- xVertex(vertexCount + 4) = -100 + x1\r
- yVertex(vertexCount + 4) = y1\r
- zVertex(vertexCount + 4) = 100 + z1\r
-\r
- ' Define the edges of the square\r
- point1Vertex(edgeCount + 1) = vertexCount + 1\r
- point2Vertex(edgeCount + 1) = vertexCount + 2\r
- col(edgeCount + 1) = c\r
-\r
- point1Vertex(edgeCount + 2) = vertexCount + 2\r
- point2Vertex(edgeCount + 2) = vertexCount + 3\r
- col(edgeCount + 2) = c\r
-\r
- point1Vertex(edgeCount + 3) = vertexCount + 3\r
- point2Vertex(edgeCount + 3) = vertexCount + 4\r
- col(edgeCount + 3) = c\r
-\r
- point1Vertex(edgeCount + 4) = vertexCount + 4\r
- point2Vertex(edgeCount + 4) = vertexCount + 1\r
- col(edgeCount + 4) = c\r
-\r
- ' Update the counters for the next square\r
- vertexCount = vertexCount + 4\r
- edgeCount = edgeCount + 4\r
-\r
-END SUB\r
-\r
-SUB getCornerVertices\r
-\r
- ' Define the vertices of a square in 3D space\r
- xVertex(vertexCount + 1) = -150\r
- yVertex(vertexCount + 1) = -125\r
- zVertex(vertexCount + 1) = -200\r
-\r
- xVertex(vertexCount + 2) = 150\r
- yVertex(vertexCount + 2) = -125\r
- zVertex(vertexCount + 2) = -200\r
-\r
- xVertex(vertexCount + 3) = 150\r
- yVertex(vertexCount + 3) = 125\r
- zVertex(vertexCount + 3) = -200\r
-\r
- xVertex(vertexCount + 4) = -150\r
- yVertex(vertexCount + 4) = 125\r
- zVertex(vertexCount + 4) = -200\r
-\r
- ' Define the edges of the square\r
- point1Vertex(edgeCount + 1) = vertexCount + 1\r
- point2Vertex(edgeCount + 1) = vertexCount + 2\r
-\r
- point1Vertex(edgeCount + 2) = vertexCount + 2\r
- point2Vertex(edgeCount + 2) = vertexCount + 3\r
-\r
- point1Vertex(edgeCount + 3) = vertexCount + 3\r
- point2Vertex(edgeCount + 3) = vertexCount + 4\r
-\r
- point1Vertex(edgeCount + 4) = vertexCount + 4\r
- point2Vertex(edgeCount + 4) = vertexCount + 1\r
-\r
- ' Define the vertices of another square in 3D space\r
- xVertex(vertexCount + 5) = -150\r
- yVertex(vertexCount + 5) = -125\r
- zVertex(vertexCount + 5) = 200\r
-\r
- xVertex(vertexCount + 6) = 150\r
- yVertex(vertexCount + 6) = -125\r
- zVertex(vertexCount + 6) = 200\r
-\r
- xVertex(vertexCount + 7) = 150\r
- yVertex(vertexCount + 7) = 125\r
- zVertex(vertexCount + 7) = 200\r
-\r
- xVertex(vertexCount + 8) = -150\r
- yVertex(vertexCount + 8) = 125\r
- zVertex(vertexCount + 8) = 200\r
-\r
- ' Define the edges of the second square\r
- point1Vertex(edgeCount + 5) = vertexCount + 5\r
- point2Vertex(edgeCount + 5) = vertexCount + 6\r
-\r
- point1Vertex(edgeCount + 6) = vertexCount + 6\r
- point2Vertex(edgeCount + 6) = vertexCount + 7\r
-\r
- point1Vertex(edgeCount + 7) = vertexCount + 7\r
- point2Vertex(edgeCount + 7) = vertexCount + 8\r
-\r
- point1Vertex(edgeCount + 8) = vertexCount + 8\r
- point2Vertex(edgeCount + 8) = vertexCount + 5\r
-\r
- ' Define the edges connecting the two squares into cube\r
- point1Vertex(edgeCount + 9) = vertexCount + 5\r
- point2Vertex(edgeCount + 9) = vertexCount + 1\r
-\r
- point1Vertex(edgeCount + 10) = vertexCount + 6\r
- point2Vertex(edgeCount + 10) = vertexCount + 2\r
-\r
- point1Vertex(edgeCount + 11) = vertexCount + 7\r
- point2Vertex(edgeCount + 11) = vertexCount + 3\r
-\r
- point1Vertex(edgeCount + 12) = vertexCount + 8\r
- point2Vertex(edgeCount + 12) = vertexCount + 4\r
-\r
- ' Update the counters for the next set of vertices and edges\r
- vertexCount = vertexCount + 8\r
- edgeCount = edgeCount + 12\r
-\r
- ' Define a pyramid in 3D space\r
- xVertex(vertexCount + 1) = -150\r
- yVertex(vertexCount + 1) = -125 + 201\r
- zVertex(vertexCount + 1) = 0\r
-\r
- xVertex(vertexCount + 2) = -150\r
- yVertex(vertexCount + 2) = -125 + 201\r
- zVertex(vertexCount + 2) = 89\r
-\r
- xVertex(vertexCount + 3) = -150\r
- yVertex(vertexCount + 3) = -125\r
- zVertex(vertexCount + 3) = 89\r
-\r
- xVertex(vertexCount + 4) = -150\r
- yVertex(vertexCount + 4) = -125\r
- zVertex(vertexCount + 4) = 0\r
-\r
- ' Define the edges of the pyramid\r
- point1Vertex(edgeCount + 1) = vertexCount + 1\r
- point2Vertex(edgeCount + 1) = vertexCount + 2\r
-\r
- point1Vertex(edgeCount + 2) = vertexCount + 2\r
- point2Vertex(edgeCount + 2) = vertexCount + 3\r
-\r
- point1Vertex(edgeCount + 3) = vertexCount + 3\r
- point2Vertex(edgeCount + 3) = vertexCount + 4\r
-\r
- point1Vertex(edgeCount + 4) = vertexCount + 4\r
- point2Vertex(edgeCount + 4) = vertexCount + 1\r
-\r
- ' Update the counters for the next set of vertices and edges\r
- vertexCount = vertexCount + 4\r
- edgeCount = edgeCount + 4\r
-\r
-porand\r
-\r
-END SUB\r
-\r
-SUB renderHexagon (x, y, z, s)\r
-\r
-b = 0\r
-f = .3925\r
-' Calculate the vertices of a hexagon in 3D space\r
-FOR a = 0 + f TO 6 + f STEP 6.28 / 8\r
- x1 = SIN(a) * s\r
- y1 = COS(a) * s\r
- b = b + 1\r
-\r
- xVertex(vertexCount + b) = x + x1\r
- yVertex(vertexCount + b) = y\r
- zVertex(vertexCount + b) = z + y1\r
-\r
-NEXT a\r
-\r
-' Define the edges of the hexagon\r
-point1Vertex(edgeCount + 1) = vertexCount + 1\r
-point2Vertex(edgeCount + 1) = vertexCount + 2\r
-col(edgeCount + 1) = 12\r
-\r
-point1Vertex(edgeCount + 2) = vertexCount + 2\r
-point2Vertex(edgeCount + 2) = vertexCount + 3\r
-col(edgeCount + 2) = 12\r
-\r
-point1Vertex(edgeCount + 3) = vertexCount + 3\r
-point2Vertex(edgeCount + 3) = vertexCount + 4\r
-col(edgeCount + 3) = 12\r
-\r
-point1Vertex(edgeCount + 4) = vertexCount + 4\r
-point2Vertex(edgeCount + 4) = vertexCount + 5\r
-col(edgeCount + 4) = 12\r
-\r
-point1Vertex(edgeCount + 5) = vertexCount + 5\r
-point2Vertex(edgeCount + 5) = vertexCount + 6\r
-col(edgeCount + 5) = 12\r
-\r
-point1Vertex(edgeCount + 6) = vertexCount + 6\r
-point2Vertex(edgeCount + 6) = vertexCount + 7\r
-col(edgeCount + 6) = 12\r
-\r
-point1Vertex(edgeCount + 7) = vertexCount + 7\r
-point2Vertex(edgeCount + 7) = vertexCount + 8\r
-col(edgeCount + 7) = 12\r
-\r
-point1Vertex(edgeCount + 8) = vertexCount + 8\r
-point2Vertex(edgeCount + 8) = vertexCount + 1\r
-col(edgeCount + 8) = 12\r
-\r
-' Update the counters for the next set of vertices and edges\r
-vertexCount = vertexCount + b\r
-edgeCount = edgeCount + 8\r
-\r
-END SUB\r
-\r
-SUB nait3d\r
-\r
- ' Main loop to render the 3D scene\r
-1\r
-\r
- ' Update the position based on rotation\r
- myx = myx + SIN(deg1) * mye\r
- myz = myz + COS(deg1) * mye\r
-\r
- myx = myx + COS(deg1) * myk\r
- myz = myz - SIN(deg1) * myk\r
-\r
- ' Update the rotation angles\r
- deg1 = deg1 + d1\r
- Deg2 = Deg2 + d2\r
-\r
- ' Calculate the rotation matrices\r
- C1 = COS(deg1): S1 = SIN(deg1)\r
- C2 = COS(Deg2): S2 = SIN(Deg2)\r
-\r
- ' Apply the rotation to each vertex\r
- FOR a = 1 TO vertexCount\r
- xo = xVertex(a) - myx\r
- yo = -yVertex(a) - myy\r
- zo = zVertex(a) - myz\r
-\r
- x1 = (xo * C1 - zo * S1)\r
- z1 = (xo * S1 + zo * C1)\r
-\r
- y1 = (yo * C2 - z1 * S2)\r
- z2 = (yo * S2 + z1 * C2)\r
-\r
- ' Project the vertex onto the 2D screen\r
- xOriginal(a) = xCoordinate(a)\r
- yOriginal(a) = yCoordinate(a)\r
- IF z2 < 20 THEN\r
- xCoordinate(a) = -1\r
- ELSE\r
- xCoordinate(a) = 320 + (x1 / z2 * 500)\r
- yCoordinate(a) = 240 + (y1 / z2 * 500)\r
- END IF\r
- NEXT\r
-\r
- ' Draw the edges of each shape\r
- FOR a = 1 TO edgeCount\r
- p1 = point1Vertex(a)\r
- p2 = point2Vertex(a)\r
- IF xOriginal(p1) = -1 OR xOriginal(p2) = -1 THEN\r
- ' Skip drawing if the vertex is off-screen\r
- ELSE\r
- ' erase edge on old coordinates\r
- LINE (xOriginal(p1), yOriginal(p1))-(xOriginal(p2), yOriginal(p2)), 0\r
- END IF\r
-\r
- IF xCoordinate(p1) = -1 OR xCoordinate(p2) = -1 THEN\r
- ' Skip drawing if the vertex is off-screen\r
- ELSE\r
- ' draw edge on new coordinates\r
- LINE (xCoordinate(p1), yCoordinate(p1))-(xCoordinate(p2), yCoordinate(p2)), col(a)\r
- END IF\r
- NEXT\r
-\r
- ' Handle user input\r
- K$ = INKEY$\r
- IF K$ <> "" THEN\r
-\r
- SELECT CASE K$\r
-\r
- CASE CHR$(0) + "P"\r
- mye = mye - 3\r
-\r
- CASE CHR$(0) + "H"\r
- mye = mye + 3\r
-\r
- CASE CHR$(0) + "M"\r
- myk = myk + 3\r
-\r
- CASE CHR$(0) + "K"\r
- myk = myk - 3\r
-\r
- CASE "+"\r
- myy = myy + 3\r
-\r
- CASE "-"\r
- myy = myy - 3\r
-\r
- CASE "6"\r
- d1 = d1 + .01\r
-\r
- CASE "4"\r
- d1 = d1 - .01\r
-\r
- CASE "8"\r
- d2 = d2 - .01\r
-\r
- CASE "2"\r
- d2 = d2 + .01\r
-\r
- CASE " "\r
- d1 = d1 / 2\r
- d2 = d2 / 2\r
- d3 = d3 / 2\r
- mye = mye / 2\r
- myk = myk / 2\r
-\r
- CASE "q"\r
- SYSTEM\r
-\r
- CASE CHR$(27)\r
- SYSTEM\r
- END SELECT\r
- END IF\r
-\r
- ' Continue the main loop\r
- GOTO 1\r
-END SUB\r
-\r
-SUB porand\r
-\r
- ' Generate a grid of shapes in 3D space\r
- FOR x = -100 TO 0 STEP 12.067 + .3\r
- FOR z = -100 TO 0 STEP 12.067 + .3\r
- renderHexagon x, -125, z, 6.53\r
- renderSquare x + 6.033 + .15, -125, z + 6.033 + .15, 3.111 + .3\r
- NEXT z\r
- NEXT x\r
-\r
- ' Generate another grid of shapes in 3D space\r
- FOR y = -100 TO 0 STEP 20.3\r
- FOR x = -100 TO 0 STEP 20.3\r
- renderSquare2 x, y, 200, 10\r
- NEXT x\r
- NEXT y\r
-\r
-END SUB\r
-\r
-SUB renderSquare (x%, y%, z%, s%)\r
-\r
- ' Define the vertices of a square in 3D space\r
- xVertex(vertexCount + 1) = x%\r
- yVertex(vertexCount + 1) = y%\r
- zVertex(vertexCount + 1) = z% + s%\r
-\r
- xVertex(vertexCount + 2) = x% + s%\r
- yVertex(vertexCount + 2) = y%\r
- zVertex(vertexCount + 2) = z%\r
-\r
- xVertex(vertexCount + 3) = x%\r
- yVertex(vertexCount + 3) = y%\r
- zVertex(vertexCount + 3) = z% - s%\r
-\r
- xVertex(vertexCount + 4) = x% - s%\r
- yVertex(vertexCount + 4) = y%\r
- zVertex(vertexCount + 4) = z%\r
-\r
- ' Define the edges of the square\r
- point1Vertex(edgeCount + 1) = vertexCount + 1\r
- point2Vertex(edgeCount + 1) = vertexCount + 2\r
- col(edgeCount + 1) = 10\r
-\r
- point1Vertex(edgeCount + 2) = vertexCount + 2\r
- point2Vertex(edgeCount + 2) = vertexCount + 3\r
- col(edgeCount + 2) = 10\r
-\r
- point1Vertex(edgeCount + 3) = vertexCount + 3\r
- point2Vertex(edgeCount + 3) = vertexCount + 4\r
- col(edgeCount + 3) = 10\r
-\r
- point1Vertex(edgeCount + 4) = vertexCount + 4\r
- point2Vertex(edgeCount + 4) = vertexCount + 1\r
- col(edgeCount + 4) = 10\r
-\r
- ' Update the counters for the next square\r
- vertexCount = vertexCount + 4\r
- edgeCount = edgeCount + 4\r
-\r
-END SUB\r
-\r
-SUB renderSquare2 (x, y, z, s)\r
-\r
- ' Define the vertices of a square in 3D space\r
- xVertex(vertexCount + 1) = x - s\r
- yVertex(vertexCount + 1) = y - s\r
- zVertex(vertexCount + 1) = z\r
-\r
- xVertex(vertexCount + 2) = x + s\r
- yVertex(vertexCount + 2) = y - s\r
- zVertex(vertexCount + 2) = z\r
-\r
- xVertex(vertexCount + 3) = x + s\r
- yVertex(vertexCount + 3) = y + s\r
- zVertex(vertexCount + 3) = z\r
-\r
- xVertex(vertexCount + 4) = x - s\r
- yVertex(vertexCount + 4) = y + s\r
- zVertex(vertexCount + 4) = z\r
-\r
- ' Define the edges of the square\r
- point1Vertex(edgeCount + 1) = vertexCount + 1\r
- point2Vertex(edgeCount + 1) = vertexCount + 2\r
- col(edgeCount + 1) = 14\r
-\r
- point1Vertex(edgeCount + 2) = vertexCount + 2\r
- point2Vertex(edgeCount + 2) = vertexCount + 3\r
- col(edgeCount + 2) = 14\r
-\r
- point1Vertex(edgeCount + 3) = vertexCount + 3\r
- point2Vertex(edgeCount + 3) = vertexCount + 4\r
- col(edgeCount + 3) = 14\r
-\r
- point1Vertex(edgeCount + 4) = vertexCount + 4\r
- point2Vertex(edgeCount + 4) = vertexCount + 1\r
- col(edgeCount + 4) = 14\r
-\r
- ' Update the counters for the next square\r
- vertexCount = vertexCount + 4\r
- edgeCount = edgeCount + 4\r
-\r
-END SUB\r
-\r
-SUB start\r
-\r
- ' Initialize the screen and clear it\r
- SCREEN 12\r
- CLS\r
-\r
- ' Set the initial color of all shapes\r
- FOR a = 1 TO 4000\r
- col(a) = 15\r
- NEXT a\r
-\r
- ' Initialize counters for vertices and edges\r
- vertexCount = 0\r
- edgeCount = 0\r
-\r
- ' Generate the initial set of shapes\r
- getCornerVertices\r
-\r
-END SUB\r
--- /dev/null
+' Program renders rotating 3D animation from cubes.
+' Cubes appear and disappear according to Conway's Game of Life rules.
+'
+' By Svjatoslav Agejenko.
+' Email: svjatoslav@svjatoslav.eu
+' Homepage: http://www.svjatoslav.eu
+'
+' Changelog:
+' ?, Initial version
+' 2024, Improved program readability using AI
+
+DECLARE SUB PlaceCube (x!, y!, z!)
+DECLARE SUB DrawCube (x!, y!, z!)
+
+DECLARE SUB CreateCollisionData ()
+DECLARE SUB UpdateCollisionData ()
+DECLARE SUB RenderScene ()
+DECLARE SUB InitializeEnvironment ()
+DECLARE SUB StartGame ()
+
+DIM SHARED numPoints, numLines, pointCount, lineCount
+DIM SHARED pointsX(1 TO 3000), pointsY(1 TO 3000), pointsZ(1 TO 3000)
+DIM SHARED renderedPointsX(1 TO 7000), renderedPointsY(1 TO 7000)
+DIM SHARED originalRenderedPointsX(0 TO 9000), originalRenderedPointsY(0 TO 9000)
+DIM SHARED oldPointCount, oldLineCount
+DIM SHARED lineVertices1(1 TO 3800), lineVertices2(1 TO 3800), lineColors(1 TO 3800)
+DIM SHARED originalLineVertices1(1 TO 3800), originalLineVertices2(1 TO 3800)
+DIM SHARED myPositionX, myPositionY, myPositionZ
+DIM SHARED myPreviousPositionX, myPreviousPositionY, myPreviousPositionZ
+DIM SHARED angle1, angle2
+DIM SHARED angle1Str, angle2Str
+DIM SHARED frameCount
+
+DIM SHARED gameOfLifeGrid(1 TO 50, 1 TO 50)
+DIM SHARED nextGameOfLifeGrid(1 TO 50, 1 TO 50)
+
+StartGame
+
+angle1 = 1.5
+10
+frameCount = frameCount + 1
+
+CreateCollisionData
+RenderScene
+
+myPositionX = SIN(frameCount / 20) * 12
+myPositionY = SIN(frameCount / 50) * 10 + 15
+myPositionZ = COS(frameCount / 20) * 12
+
+angle1 = angle1 - .05
+angle2 = 2.2 + SIN(frameCount / 50) / 2
+
+inputKey$ = INKEY$
+IF inputKey$ <> "" THEN SYSTEM
+GOTO 10
+
+SUB CreateCollisionData
+pointCount = numPoints
+lineCount = numLines
+
+FOR y = 1 TO 50
+ FOR x = 1 TO 50
+ IF gameOfLifeGrid(x, y) = 1 THEN
+ v = ABS(x - 26) + ABS(y - 26) + frameCount
+ PlaceCube x - 25, SIN(v / 5) * 5, y - 25
+ END IF
+ NEXT x
+NEXT y
+
+IF frameCount \ 10 = frameCount / 10 THEN
+
+FOR y = 2 TO 49
+FOR x = 2 TO 49
+c = gameOfLifeGrid(x - 1, y - 1)
+c = c + gameOfLifeGrid(x, y - 1)
+c = c + gameOfLifeGrid(x + 1, y - 1)
+c = c + gameOfLifeGrid(x - 1, y)
+c = c + gameOfLifeGrid(x + 1, y)
+c = c + gameOfLifeGrid(x - 1, y + 1)
+c = c + gameOfLifeGrid(x, y + 1)
+c = c + gameOfLifeGrid(x + 1, y + 1)
+
+IF gameOfLifeGrid(x, y) = 1 THEN
+ IF (c > 3) OR (c < 2) THEN nextGameOfLifeGrid(x, y) = 0 ELSE nextGameOfLifeGrid(x, y) = 1
+ELSE
+ IF c = 3 THEN nextGameOfLifeGrid(x, y) = 1 ELSE nextGameOfLifeGrid(x, y) = 0
+END IF
+NEXT x
+NEXT y
+
+FOR y = 1 TO 50
+FOR x = 1 TO 50
+ gameOfLifeGrid(x, y) = nextGameOfLifeGrid(x, y)
+NEXT x
+NEXT y
+END IF
+
+END SUB
+
+SUB InitializeEnvironment
+FOR z = -5 TO 5
+FOR x = -5 TO 5
+pointCount = pointCount + 1
+pointsX(pointCount) = x
+pointsY(pointCount) = 0
+pointsZ(pointCount) = z
+IF x > -5 THEN
+lineCount = lineCount + 1
+lineVertices1(lineCount) = pointCount
+lineVertices2(lineCount) = pointCount - 1
+lineColors(lineCount) = 1
+END IF
+IF z > -5 THEN
+lineCount = lineCount + 1
+lineVertices1(lineCount) = pointCount
+lineVertices2(lineCount) = pointCount - 10
+lineColors(lineCount) = 1
+END IF
+NEXT x
+NEXT z
+
+numPoints = pointCount
+numLines = lineCount
+
+END SUB
+
+SUB InitializeEnvironment1
+pointCount = 1
+pointsX(pointCount) = -2
+pointsY(pointCount) = 0
+pointsZ(pointCount) = 0
+pointCount = pointCount + 1
+pointsX(pointCount) = 2
+pointsY(pointCount) = 0
+pointsZ(pointCount) = 0
+
+lineCount = 1
+lineVertices1(lineCount) = 1
+lineVertices2(lineCount) = 2
+lineColors(lineCount) = 14
+
+END SUB
+
+SUB PlaceCube (x, y, z)
+
+v = 3
+
+lineCount = lineCount + 1
+lineVertices1(lineCount) = pointCount + 1
+lineVertices2(lineCount) = pointCount + 2
+lineColors(lineCount) = v
+
+lineCount = lineCount + 1
+lineVertices1(lineCount) = pointCount + 2
+lineVertices2(lineCount) = pointCount + 3
+lineColors(lineCount) = v
+
+lineCount = lineCount + 1
+lineVertices1(lineCount) = pointCount + 3
+lineVertices2(lineCount) = pointCount + 4
+lineColors(lineCount) = v
+
+lineCount = lineCount + 1
+lineVertices1(lineCount) = pointCount + 4
+lineVertices2(lineCount) = pointCount + 1
+lineColors(lineCount) = v
+
+lineCount = lineCount + 1
+lineVertices1(lineCount) = pointCount + 5
+lineVertices2(lineCount) = pointCount + 6
+lineColors(lineCount) = v
+
+lineCount = lineCount + 1
+lineVertices1(lineCount) = pointCount + 6
+lineVertices2(lineCount) = pointCount + 7
+lineColors(lineCount) = v
+
+lineCount = lineCount + 1
+lineVertices1(lineCount) = pointCount + 7
+lineVertices2(lineCount) = pointCount + 8
+lineColors(lineCount) = v
+
+lineCount = lineCount + 1
+lineVertices1(lineCount) = pointCount + 8
+lineVertices2(lineCount) = pointCount + 5
+lineColors(lineCount) = v
+
+lineCount = lineCount + 1
+lineVertices1(lineCount) = pointCount + 1
+lineVertices2(lineCount) = pointCount + 5
+lineColors(lineCount) = v
+
+lineCount = lineCount + 1
+lineVertices1(lineCount) = pointCount + 2
+lineVertices2(lineCount) = pointCount + 6
+lineColors(lineCount) = v
+
+lineCount = lineCount + 1
+lineVertices1(lineCount) = pointCount + 3
+lineVertices2(lineCount) = pointCount + 7
+lineColors(lineCount) = v
+
+lineCount = lineCount + 1
+lineVertices1(lineCount) = pointCount + 4
+lineVertices2(lineCount) = pointCount + 8
+lineColors(lineCount) = v
+
+pointCount = pointCount + 1
+pointsX(pointCount) = x - .5
+pointsY(pointCount) = y
+pointsZ(pointCount) = z - .5
+
+pointCount = pointCount + 1
+pointsX(pointCount) = x + .5
+pointsY(pointCount) = y
+pointsZ(pointCount) = z - .5
+
+pointCount = pointCount + 1
+pointsX(pointCount) = x + .5
+pointsY(pointCount) = y
+pointsZ(pointCount) = z + .5
+
+pointCount = pointCount + 1
+pointsX(pointCount) = x - .5
+pointsY(pointCount) = y
+pointsZ(pointCount) = z + .5
+
+pointCount = pointCount + 1
+pointsX(pointCount) = x - .5
+pointsY(pointCount) = y + 1
+pointsZ(pointCount) = z - .5
+
+pointCount = pointCount + 1
+pointsX(pointCount) = x + .5
+pointsY(pointCount) = y + 1
+pointsZ(pointCount) = z - .5
+
+pointCount = pointCount + 1
+pointsX(pointCount) = x + .5
+pointsY(pointCount) = y + 1
+pointsZ(pointCount) = z + .5
+
+pointCount = pointCount + 1
+pointsX(pointCount) = x - .5
+pointsY(pointCount) = y + 1
+pointsZ(pointCount) = z + .5
+
+END SUB
+
+SUB RenderScene
+
+sineAngle1 = SIN(angle1)
+cosineAngle1 = COS(angle1)
+sineAngle2 = SIN(angle2)
+cosineAngle2 = COS(angle2)
+
+FOR a = 1 TO pointCount
+x = pointsX(a) + myPositionX
+y = pointsY(a) - myPositionY
+z = pointsZ(a) + myPositionZ
+
+x1 = x * sineAngle1 - z * cosineAngle1
+z1 = x * cosineAngle1 + z * sineAngle1
+y1 = y * sineAngle2 - z1 * cosineAngle2
+z2 = y * cosineAngle2 + z1 * sineAngle2
+
+IF z2 < .5 THEN
+renderedPointsX(a) = -1
+ELSE
+renderedPointsX(a) = 320 + (x1 / z2 * 400)
+renderedPointsY(a) = 240 - (y1 / z2 * 400)
+END IF
+NEXT a
+
+FOR a = 1 TO lineCount
+l1 = originalLineVertices1(a)
+l2 = originalLineVertices2(a)
+
+IF originalRenderedPointsX(l1) = -1 OR originalRenderedPointsX(l2) = -1 THEN
+ELSE
+LINE (originalRenderedPointsX(l1), originalRenderedPointsY(l1))-(originalRenderedPointsX(l2), originalRenderedPointsY(l2)), 0
+END IF
+
+l1 = lineVertices1(a)
+l2 = lineVertices2(a)
+IF renderedPointsX(l1) = -1 OR renderedPointsX(l2) = -1 THEN
+ELSE
+LINE (renderedPointsX(l1), renderedPointsY(l1))-(renderedPointsX(l2), renderedPointsY(l2)), lineColors(a)
+END IF
+NEXT a
+
+IF lineCount < oldLineCount THEN
+FOR a = lineCount + 1 TO oldLineCount
+l1 = originalLineVertices1(a)
+l2 = originalLineVertices2(a)
+IF originalRenderedPointsX(l1) = -1 OR originalRenderedPointsX(l2) = -1 THEN
+ELSE
+LINE (originalRenderedPointsX(l1), originalRenderedPointsY(l1))-(originalRenderedPointsX(l2), originalRenderedPointsY(l2)), 0
+END IF
+NEXT a
+END IF
+
+FOR a = 1 TO pointCount
+originalRenderedPointsX(a) = renderedPointsX(a)
+originalRenderedPointsY(a) = renderedPointsY(a)
+NEXT a
+
+oldPointCount = pointCount
+
+FOR a = 1 TO lineCount
+originalLineVertices1(a) = lineVertices1(a)
+originalLineVertices2(a) = lineVertices2(a)
+NEXT a
+
+oldLineCount = lineCount
+
+END SUB
+
+SUB StartGame
+SCREEN 12
+numPoints = 0
+numLines = 0
+pointCount = numPoints
+lineCount = numLines
+gridSize = 50
+
+myPositionX = 4
+myPositionY = 15
+myPositionZ = 17
+angle1 = ATN(1) / 2 - .29
+angle2 = angle1 + 1
+
+FOR a = 1 TO 1000
+lineColors(a) = 4
+NEXT a
+
+FOR a = 1 TO 1000
+originalLineVertices1(a) = 1
+originalLineVertices2(a) = 1
+NEXT a
+
+OPEN "3dlife.dat" FOR INPUT AS #1
+y = 20
+20
+IF EOF(1) <> 0 THEN GOTO 30
+x = 20
+
+LINE INPUT #1, inputLine$
+FOR b = 1 TO LEN(inputLine$)
+ c$ = RIGHT$(LEFT$(inputLine$, b), 1)
+ IF c$ = "#" THEN gameOfLifeGrid(x, y) = 1
+ x = x + 1
+NEXT b
+
+y = y + 1
+GOTO 20
+30
+CLOSE #1
+
+END SUB
--- /dev/null
+.....#.#.....\r
+...##...##...\r
+..#.......#..\r
+.#..##.##..#.\r
+.#.#.....#.#.\r
+#..#.###.#..#\r
+.....#.#.....\r
+#..#.###.#..#\r
+.#.#.....#.#.\r
+.#..##.##..#.\r
+..#.......#..\r
+...##...##...\r
+.....#.#.....\r
--- /dev/null
+' Renders 3D text within 3D room.\r
+' User can freely fly around the room and observe the text from different angles.\r
+'\r
+' By Svjatoslav Agejenko.\r
+' Email: svjatoslav@svjatoslav.eu\r
+' Homepage: http://www.svjatoslav.eu\r
+'\r
+' Changelog:\r
+' 2003, Initial version\r
+' 2024, Improved program readability using AI\r
+'\r
+' Keyboard controls:\r
+' cursor keys and to z, w - rotate\r
+' <SPACE> - slow down\r
+' q and <ESC> - quit program\r
+' + / - - move up / down\r
+\r
+\r
+\r
+DECLARE SUB prn (x!, y!, a$)\r
+DECLARE SUB pch (x!, y!, a$)\r
+DECLARE SUB readfnt ()\r
+DECLARE SUB ruut2 (x!, y!, z!, s!)\r
+DECLARE SUB ruut (x!, y!, z!, s!)\r
+DECLARE SUB kuus (x, y, z, s)\r
+DECLARE SUB porand ()\r
+DECLARE SUB addp (x, y, z)\r
+\r
+DECLARE SUB start ()\r
+DECLARE SUB addsq (x1%, y1%, z1%)\r
+DECLARE SUB getcor ()\r
+DECLARE SUB mulcor ()\r
+DECLARE SUB nait3d ()\r
+DECLARE SUB calcsin ()\r
+DIM SHARED xn(4000), yn(4000), zn(4000)\r
+DIM SHARED x(4000), y(4000), z(4000)\r
+\r
+DIM SHARED xo(4000), yo(4000), zo(4000)\r
+DIM SHARED point1(4000), point2(4000)\r
+DIM SHARED col(4000)\r
+DIM SHARED nump, numl\r
+DIM SHARED myx, myy, myz, mye, myk\r
+DIM SHARED tpx(0 TO 10, 0 TO 255)\r
+DIM SHARED tpy(0 TO 10, 0 TO 255)\r
+DIM SHARED tl1(0 TO 10, 0 TO 255)\r
+DIM SHARED tl2(0 TO 10, 0 TO 255)\r
+\r
+myx = 0\r
+myy = 0\r
+myz = -100\r
+\r
+start\r
+\r
+nait3d\r
+\r
+SUB getcor\r
+\r
+' Define the corners of a cube\r
+xn(nump + 1) = -150\r
+yn(nump + 1) = -125\r
+zn(nump + 1) = -200\r
+\r
+xn(nump + 2) = 150\r
+yn(nump + 2) = -125\r
+zn(nump + 2) = -200\r
+\r
+xn(nump + 3) = 150\r
+yn(nump + 3) = 125\r
+zn(nump + 3) = -200\r
+\r
+xn(nump + 4) = -150\r
+yn(nump + 4) = 125\r
+zn(nump + 4) = -200\r
+\r
+xn(nump + 5) = -150\r
+yn(nump + 5) = -125\r
+zn(nump + 5) = 200\r
+\r
+xn(nump + 6) = 150\r
+yn(nump + 6) = -125\r
+zn(nump + 6) = 200\r
+\r
+xn(nump + 7) = 150\r
+yn(nump + 7) = 125\r
+zn(nump + 7) = 200\r
+\r
+xn(nump + 8) = -150\r
+yn(nump + 8) = 125\r
+zn(nump + 8) = 200\r
+\r
+' Define the lines connecting the corners\r
+point1(numl + 1) = nump + 1\r
+point2(numl + 1) = nump + 2\r
+\r
+point1(numl + 2) = nump + 2\r
+point2(numl + 2) = nump + 3\r
+\r
+point1(numl + 3) = nump + 3\r
+point2(numl + 3) = nump + 4\r
+\r
+point1(numl + 4) = nump + 4\r
+point2(numl + 4) = nump + 1\r
+\r
+point1(numl + 5) = nump + 5\r
+point2(numl + 5) = nump + 6\r
+\r
+point1(numl + 6) = nump + 6\r
+point2(numl + 6) = nump + 7\r
+\r
+point1(numl + 7) = nump + 7\r
+point2(numl + 7) = nump + 8\r
+\r
+point1(numl + 8) = nump + 8\r
+point2(numl + 8) = nump + 5\r
+\r
+point1(numl + 9) = nump + 5\r
+point2(numl + 9) = nump + 1\r
+\r
+point1(numl + 10) = nump + 6\r
+point2(numl + 10) = nump + 2\r
+\r
+point1(numl + 11) = nump + 7\r
+point2(numl + 11) = nump + 3\r
+\r
+point1(numl + 12) = nump + 8\r
+point2(numl + 12) = nump + 4\r
+\r
+nump = nump + 8\r
+numl = numl + 12\r
+\r
+' Define the corners of rectangle\r
+xn(nump + 1) = -150\r
+yn(nump + 1) = -125 + 201\r
+zn(nump + 1) = 0\r
+\r
+xn(nump + 2) = -150\r
+yn(nump + 2) = -125 + 201\r
+zn(nump + 2) = 89\r
+\r
+xn(nump + 3) = -150\r
+yn(nump + 3) = -125\r
+zn(nump + 3) = 89\r
+\r
+xn(nump + 4) = -150\r
+yn(nump + 4) = -125\r
+zn(nump + 4) = 0\r
+\r
+' Define the lines connecting these corners\r
+point1(numl + 1) = nump + 1\r
+point2(numl + 1) = nump + 2\r
+\r
+point1(numl + 2) = nump + 2\r
+point2(numl + 2) = nump + 3\r
+\r
+point1(numl + 3) = nump + 3\r
+point2(numl + 3) = nump + 4\r
+\r
+point1(numl + 4) = nump + 4\r
+point2(numl + 4) = nump + 1\r
+\r
+nump = nump + 4\r
+numl = numl + 4\r
+\r
+prn 0, 0, "three dimensional "\r
+prn 0, -3, "text example"\r
+prn 0, -6, "etc etc etc"\r
+\r
+END SUB\r
+\r
+SUB kuus (x, y, z, s)\r
+\r
+' Initialize variables\r
+b = 0\r
+f = .3925\r
+\r
+' Loop to create points of the octagon\r
+FOR a = 0 + f TO 6 + f STEP 6.28 / 8\r
+ x1 = SIN(a) * s\r
+ y1 = COS(a) * s\r
+ b = b + 1\r
+\r
+ ' Store the points in the shared arrays\r
+ xn(nump + b) = x1 + x\r
+ yn(nump + b) = y\r
+ zn(nump + b) = y1 + z\r
+NEXT a\r
+\r
+' Define the lines connecting these points\r
+point1(numl + 1) = nump + 1\r
+point2(numl + 1) = nump + 2\r
+col(numl + 1) = 12\r
+\r
+point1(numl + 2) = nump + 2\r
+point2(numl + 2) = nump + 3\r
+col(numl + 2) = 12\r
+\r
+point1(numl + 3) = nump + 3\r
+point2(numl + 3) = nump + 4\r
+col(numl + 3) = 12\r
+\r
+point1(numl + 4) = nump + 4\r
+point2(numl + 4) = nump + 5\r
+col(numl + 4) = 12\r
+\r
+point1(numl + 5) = nump + 5\r
+point2(numl + 5) = nump + 6\r
+col(numl + 5) = 12\r
+\r
+point1(numl + 6) = nump + 6\r
+point2(numl + 6) = nump + 7\r
+col(numl + 6) = 12\r
+\r
+point1(numl + 7) = nump + 7\r
+point2(numl + 7) = nump + 8\r
+col(numl + 7) = 12\r
+\r
+point1(numl + 8) = nump + 8\r
+point2(numl + 8) = nump + 1\r
+col(numl + 8) = 12\r
+\r
+nump = nump + b\r
+numl = numl + 8\r
+\r
+'LOCATE 1, 1\r
+'PRINT b\r
+\r
+END SUB\r
+\r
+SUB nait3d\r
+\r
+' Main loop for the 3D rendering\r
+1\r
+\r
+myx = myx + SIN(deg1) * mye\r
+myz = myz + COS(deg1) * mye\r
+\r
+myx = myx + COS(deg1) * myk\r
+myz = myz - SIN(deg1) * myk\r
+\r
+deg1 = deg1 + d1\r
+Deg2 = Deg2 + d2\r
+\r
+C1 = COS(deg1): S1 = SIN(deg1)\r
+C2 = COS(Deg2): S2 = SIN(Deg2)\r
+\r
+' Transform the coordinates\r
+FOR a = 1 TO nump\r
+ xo = xn(a) - myx\r
+ yo = -yn(a) - myy\r
+ zo = zn(a) - myz\r
+\r
+ x1 = (xo * C1 - zo * S1)\r
+ z1 = (xo * S1 + zo * C1)\r
+\r
+ y1 = (yo * C2 - z1 * S2)\r
+ z2 = (yo * S2 + z1 * C2)\r
+\r
+ ' Store the transformed coordinates\r
+ xo(a) = x(a)\r
+ yo(a) = y(a)\r
+\r
+ ' Check if the point is within the view\r
+ IF z2 < 20 THEN\r
+ x(a) = -1\r
+ ELSE\r
+ ' Apply perspective transformation\r
+ x(a) = 320 + (x1 / z2 * 500)\r
+ y(a) = 240 + (y1 / z2 * 500)\r
+ END IF\r
+NEXT\r
+\r
+' Draw the lines\r
+FOR a = 1 TO numl\r
+ p1 = point1(a)\r
+ p2 = point2(a)\r
+\r
+ ' Check if the points are within the view\r
+ IF xo(p1) = -1 OR xo(p2) = -1 THEN\r
+ ' Do nothing\r
+ ELSE\r
+ ' erase line at old coordinates\r
+ LINE (xo(p1), yo(p1))-(xo(p2), yo(p2)), 0\r
+ END IF\r
+\r
+ IF x(p1) = -1 OR x(p2) = -1 THEN\r
+ ' Do nothing\r
+ ELSE\r
+ ' draw line at new coordinates\r
+ LINE (x(p1), y(p1))-(x(p2), y(p2)), col(a)\r
+ END IF\r
+NEXT\r
+\r
+' Handle user input\r
+K$ = INKEY$\r
+IF K$ <> "" THEN\r
+\r
+ SELECT CASE K$\r
+\r
+ CASE CHR$(0) + "P"\r
+ mye = mye - 1\r
+\r
+ CASE CHR$(0) + "H"\r
+ mye = mye + 1\r
+\r
+ CASE CHR$(0) + "M"\r
+ myk = myk + 1\r
+\r
+ CASE CHR$(0) + "K"\r
+ myk = myk - 1\r
+\r
+ CASE "+"\r
+ myy = myy + 3\r
+\r
+ CASE "-"\r
+ myy = myy - 3\r
+\r
+ CASE "6"\r
+ d1 = d1 + .01\r
+\r
+ CASE "4"\r
+ d1 = d1 - .01\r
+\r
+ CASE "8"\r
+ d2 = d2 - .01\r
+\r
+ CASE "2"\r
+ d2 = d2 + .01\r
+\r
+ CASE " "\r
+ d1 = d1 / 2\r
+ d2 = d2 / 2\r
+ d3 = d3 / 2\r
+ mye = mye / 2\r
+ myk = myk / 2\r
+\r
+ CASE "q"\r
+ SYSTEM\r
+\r
+ CASE CHR$(27)\r
+ SYSTEM\r
+\r
+ END SELECT\r
+END IF\r
+\r
+GOTO 1\r
+\r
+END SUB\r
+\r
+SUB pch (x, y, a$)\r
+\r
+' Initialize variables\r
+b = ASC(a$)\r
+up = 0\r
+ul = 0\r
+\r
+' Loop to create points for the character\r
+FOR c = 0 TO 100\r
+ IF tpx(c, b) = 999 THEN GOTO 4\r
+ up = up + 1\r
+ xn(nump + up) = x + tpx(c, b)\r
+ yn(nump + up) = y - tpy(c, b)\r
+ zn(nump + up) = 0\r
+NEXT c\r
+4\r
+\r
+' Loop to define the lines for the character\r
+FOR c = 0 TO 100\r
+ IF tl1(c, b) = 999 THEN GOTO 5\r
+ ul = ul + 1\r
+ point1(numl + ul) = tl1(c, b) + nump + 1\r
+ point2(numl + ul) = tl2(c, b) + nump + 1\r
+ col(numl + ul) = 4\r
+NEXT c\r
+5\r
+\r
+' Update the counters\r
+nump = nump + up\r
+numl = numl + ul\r
+\r
+END SUB\r
+\r
+SUB porand\r
+' do floor of the 3D room\r
+\r
+' Loop to create floor tiles made of hexagons and squares\r
+FOR x = -100 TO 0 STEP 12.067 + .3\r
+ FOR z = -100 TO 0 STEP 12.067 + .3\r
+ kuus x, -125, z, 6.53\r
+ ruut x + 6.033 + .15, -125, z + 6.033 + .15, 3.111 + .3\r
+ NEXT z\r
+NEXT x\r
+\r
+' Loop to create squares\r
+FOR y = -100 TO 0 STEP 20.3\r
+ FOR x = -100 TO 0 STEP 20.3\r
+ ruut2 x, y, 200, 10\r
+ NEXT x\r
+NEXT y\r
+\r
+END SUB\r
+\r
+SUB prn (x, y, a$)\r
+\r
+' Loop to print each character\r
+FOR b = 1 TO LEN(a$)\r
+ c$ = RIGHT$(LEFT$(a$, b), 1)\r
+ pch x + b * 3, y, c$\r
+NEXT b\r
+\r
+END SUB\r
+\r
+SUB readfnt\r
+\r
+' Open the font file\r
+OPEN "font.dat" FOR INPUT AS #1\r
+\r
+' Loop to read the font data\r
+3\r
+IF EOF(1) <> 0 THEN GOTO 2\r
+LINE INPUT #1, a$\r
+\r
+IF LEFT$(a$, 1) = "#" THEN\r
+ chr = ASC(RIGHT$(LEFT$(a$, 3), 1))\r
+\r
+ ' Initialize counters\r
+ pp = 0\r
+ lp = 0\r
+END IF\r
+\r
+' read the points for the character\r
+IF LEFT$(a$, 1) = "p" THEN\r
+ tpx(pp, chr) = VAL(RIGHT$(LEFT$(a$, 3), 1))\r
+ tpy(pp, chr) = VAL(RIGHT$(LEFT$(a$, 5), 1))\r
+ pp = pp + 1\r
+END IF\r
+\r
+' read the lines for the character\r
+IF LEFT$(a$, 1) = "l" THEN\r
+ tl1(lp, chr) = VAL(RIGHT$(LEFT$(a$, 3), 1))\r
+ tl2(lp, chr) = VAL(RIGHT$(LEFT$(a$, 5), 1))\r
+ lp = lp + 1\r
+END IF\r
+\r
+GOTO 3\r
+\r
+' Close the font file\r
+2\r
+CLOSE #1\r
+\r
+END SUB\r
+\r
+SUB ruut (x, y, z, s)\r
+\r
+' Define the corners of the rectangle\r
+xn(nump + 1) = x\r
+yn(nump + 1) = y\r
+zn(nump + 1) = z + s\r
+\r
+xn(nump + 2) = x + s\r
+yn(nump + 2) = y\r
+zn(nump + 2) = z\r
+\r
+xn(nump + 3) = x\r
+yn(nump + 3) = y\r
+zn(nump + 3) = z - s\r
+\r
+xn(nump + 4) = x - s\r
+yn(nump + 4) = y\r
+zn(nump + 4) = z\r
+\r
+' Define the lines connecting these corners\r
+point1(numl + 1) = nump + 1\r
+point2(numl + 1) = nump + 2\r
+col(numl + 1) = 10\r
+\r
+point1(numl + 2) = nump + 2\r
+point2(numl + 2) = nump + 3\r
+col(numl + 2) = 10\r
+\r
+point1(numl + 3) = nump + 3\r
+point2(numl + 3) = nump + 4\r
+col(numl + 3) = 10\r
+\r
+point1(numl + 4) = nump + 4\r
+point2(numl + 4) = nump + 1\r
+col(numl + 4) = 10\r
+\r
+' Update the counters\r
+nump = nump + 4\r
+numl = numl + 4\r
+\r
+END SUB\r
+\r
+SUB ruut2 (x, y, z, s)\r
+\r
+' Define the corners of the rectangle\r
+xn(nump + 1) = x - s\r
+yn(nump + 1) = y - s\r
+zn(nump + 1) = z\r
+\r
+xn(nump + 2) = x + s\r
+yn(nump + 2) = y - s\r
+zn(nump + 2) = z\r
+\r
+xn(nump + 3) = x + s\r
+yn(nump + 3) = y + s\r
+zn(nump + 3) = z\r
+\r
+xn(nump + 4) = x - s\r
+yn(nump + 4) = y + s\r
+zn(nump + 4) = z\r
+\r
+' Define the lines connecting these corners\r
+point1(numl + 1) = nump + 1\r
+point2(numl + 1) = nump + 2\r
+col(numl + 1) = 14\r
+\r
+point1(numl + 2) = nump + 2\r
+point2(numl + 2) = nump + 3\r
+col(numl + 2) = 14\r
+\r
+point1(numl + 3) = nump + 3\r
+point2(numl + 3) = nump + 4\r
+col(numl + 3) = 14\r
+\r
+point1(numl + 4) = nump + 4\r
+point2(numl + 4) = nump + 1\r
+col(numl + 4) = 14\r
+\r
+' Update the counters\r
+nump = nump + 4\r
+numl = numl + 4\r
+\r
+END SUB\r
+\r
+SUB start\r
+\r
+' Initialize the screen and clear it\r
+SCREEN 12\r
+CLS\r
+\r
+' Set the default color for all points\r
+FOR a = 1 TO 4000\r
+ col(a) = 15\r
+NEXT a\r
+\r
+' Initialize counters\r
+nump = 0\r
+numl = 0\r
+\r
+' Initialize font data\r
+FOR a = 0 TO 255\r
+ FOR b = 0 TO 10\r
+ tpx(b, a) = 999\r
+ tpy(b, a) = 999\r
+ tl1(b, a) = 999\r
+ tl2(b, a) = 999\r
+ NEXT b\r
+NEXT a\r
+\r
+' Read the font data\r
+readfnt\r
+\r
+' Define the corners of the cubes\r
+getcor\r
+\r
+END SUB\r
+++ /dev/null
-' Program renders rotating 3D animation from cubes.
-' Cubes appear and disappear according to Conway's Game of Life rules.
-
-DECLARE SUB PlaceCube (x!, y!, z!)
-DECLARE SUB DrawCube (x!, y!, z!)
-
-DECLARE SUB CreateCollisionData ()
-DECLARE SUB UpdateCollisionData ()
-DECLARE SUB RenderScene ()
-DECLARE SUB InitializeEnvironment ()
-DECLARE SUB StartGame ()
-
-DIM SHARED numPoints, numLines, pointCount, lineCount
-DIM SHARED pointsX(1 TO 3000), pointsY(1 TO 3000), pointsZ(1 TO 3000)
-DIM SHARED renderedPointsX(1 TO 7000), renderedPointsY(1 TO 7000)
-DIM SHARED originalRenderedPointsX(0 TO 9000), originalRenderedPointsY(0 TO 9000)
-DIM SHARED oldPointCount, oldLineCount
-DIM SHARED lineVertices1(1 TO 3800), lineVertices2(1 TO 3800), lineColors(1 TO 3800)
-DIM SHARED originalLineVertices1(1 TO 3800), originalLineVertices2(1 TO 3800)
-DIM SHARED myPositionX, myPositionY, myPositionZ
-DIM SHARED myPreviousPositionX, myPreviousPositionY, myPreviousPositionZ
-DIM SHARED angle1, angle2
-DIM SHARED angle1Str, angle2Str
-DIM SHARED frameCount
-
-DIM SHARED gameOfLifeGrid(1 TO 50, 1 TO 50)
-DIM SHARED nextGameOfLifeGrid(1 TO 50, 1 TO 50)
-
-StartGame
-
-angle1 = 1.5
-10
-frameCount = frameCount + 1
-
-CreateCollisionData
-RenderScene
-
-myPositionX = SIN(frameCount / 20) * 12
-myPositionY = SIN(frameCount / 50) * 10 + 15
-myPositionZ = COS(frameCount / 20) * 12
-
-angle1 = angle1 - .05
-angle2 = 2.2 + SIN(frameCount / 50) / 2
-
-inputKey$ = INKEY$
-IF inputKey$ <> "" THEN SYSTEM
-GOTO 10
-
-SUB CreateCollisionData
-pointCount = numPoints
-lineCount = numLines
-
-FOR y = 1 TO 50
- FOR x = 1 TO 50
- IF gameOfLifeGrid(x, y) = 1 THEN
- v = ABS(x - 26) + ABS(y - 26) + frameCount
- PlaceCube x - 25, SIN(v / 5) * 5, y - 25
- END IF
- NEXT x
-NEXT y
-
-IF frameCount \ 10 = frameCount / 10 THEN
-
-FOR y = 2 TO 49
-FOR x = 2 TO 49
-c = gameOfLifeGrid(x - 1, y - 1)
-c = c + gameOfLifeGrid(x, y - 1)
-c = c + gameOfLifeGrid(x + 1, y - 1)
-c = c + gameOfLifeGrid(x - 1, y)
-c = c + gameOfLifeGrid(x + 1, y)
-c = c + gameOfLifeGrid(x - 1, y + 1)
-c = c + gameOfLifeGrid(x, y + 1)
-c = c + gameOfLifeGrid(x + 1, y + 1)
-
-IF gameOfLifeGrid(x, y) = 1 THEN
- IF (c > 3) OR (c < 2) THEN nextGameOfLifeGrid(x, y) = 0 ELSE nextGameOfLifeGrid(x, y) = 1
-ELSE
- IF c = 3 THEN nextGameOfLifeGrid(x, y) = 1 ELSE nextGameOfLifeGrid(x, y) = 0
-END IF
-NEXT x
-NEXT y
-
-FOR y = 1 TO 50
-FOR x = 1 TO 50
- gameOfLifeGrid(x, y) = nextGameOfLifeGrid(x, y)
-NEXT x
-NEXT y
-END IF
-
-END SUB
-
-SUB InitializeEnvironment
-FOR z = -5 TO 5
-FOR x = -5 TO 5
-pointCount = pointCount + 1
-pointsX(pointCount) = x
-pointsY(pointCount) = 0
-pointsZ(pointCount) = z
-IF x > -5 THEN
-lineCount = lineCount + 1
-lineVertices1(lineCount) = pointCount
-lineVertices2(lineCount) = pointCount - 1
-lineColors(lineCount) = 1
-END IF
-IF z > -5 THEN
-lineCount = lineCount + 1
-lineVertices1(lineCount) = pointCount
-lineVertices2(lineCount) = pointCount - 10
-lineColors(lineCount) = 1
-END IF
-NEXT x
-NEXT z
-
-numPoints = pointCount
-numLines = lineCount
-
-END SUB
-
-SUB InitializeEnvironment1
-pointCount = 1
-pointsX(pointCount) = -2
-pointsY(pointCount) = 0
-pointsZ(pointCount) = 0
-pointCount = pointCount + 1
-pointsX(pointCount) = 2
-pointsY(pointCount) = 0
-pointsZ(pointCount) = 0
-
-lineCount = 1
-lineVertices1(lineCount) = 1
-lineVertices2(lineCount) = 2
-lineColors(lineCount) = 14
-
-END SUB
-
-SUB PlaceCube (x, y, z)
-
-v = 3
-
-lineCount = lineCount + 1
-lineVertices1(lineCount) = pointCount + 1
-lineVertices2(lineCount) = pointCount + 2
-lineColors(lineCount) = v
-
-lineCount = lineCount + 1
-lineVertices1(lineCount) = pointCount + 2
-lineVertices2(lineCount) = pointCount + 3
-lineColors(lineCount) = v
-
-lineCount = lineCount + 1
-lineVertices1(lineCount) = pointCount + 3
-lineVertices2(lineCount) = pointCount + 4
-lineColors(lineCount) = v
-
-lineCount = lineCount + 1
-lineVertices1(lineCount) = pointCount + 4
-lineVertices2(lineCount) = pointCount + 1
-lineColors(lineCount) = v
-
-lineCount = lineCount + 1
-lineVertices1(lineCount) = pointCount + 5
-lineVertices2(lineCount) = pointCount + 6
-lineColors(lineCount) = v
-
-lineCount = lineCount + 1
-lineVertices1(lineCount) = pointCount + 6
-lineVertices2(lineCount) = pointCount + 7
-lineColors(lineCount) = v
-
-lineCount = lineCount + 1
-lineVertices1(lineCount) = pointCount + 7
-lineVertices2(lineCount) = pointCount + 8
-lineColors(lineCount) = v
-
-lineCount = lineCount + 1
-lineVertices1(lineCount) = pointCount + 8
-lineVertices2(lineCount) = pointCount + 5
-lineColors(lineCount) = v
-
-lineCount = lineCount + 1
-lineVertices1(lineCount) = pointCount + 1
-lineVertices2(lineCount) = pointCount + 5
-lineColors(lineCount) = v
-
-lineCount = lineCount + 1
-lineVertices1(lineCount) = pointCount + 2
-lineVertices2(lineCount) = pointCount + 6
-lineColors(lineCount) = v
-
-lineCount = lineCount + 1
-lineVertices1(lineCount) = pointCount + 3
-lineVertices2(lineCount) = pointCount + 7
-lineColors(lineCount) = v
-
-lineCount = lineCount + 1
-lineVertices1(lineCount) = pointCount + 4
-lineVertices2(lineCount) = pointCount + 8
-lineColors(lineCount) = v
-
-pointCount = pointCount + 1
-pointsX(pointCount) = x - .5
-pointsY(pointCount) = y
-pointsZ(pointCount) = z - .5
-
-pointCount = pointCount + 1
-pointsX(pointCount) = x + .5
-pointsY(pointCount) = y
-pointsZ(pointCount) = z - .5
-
-pointCount = pointCount + 1
-pointsX(pointCount) = x + .5
-pointsY(pointCount) = y
-pointsZ(pointCount) = z + .5
-
-pointCount = pointCount + 1
-pointsX(pointCount) = x - .5
-pointsY(pointCount) = y
-pointsZ(pointCount) = z + .5
-
-pointCount = pointCount + 1
-pointsX(pointCount) = x - .5
-pointsY(pointCount) = y + 1
-pointsZ(pointCount) = z - .5
-
-pointCount = pointCount + 1
-pointsX(pointCount) = x + .5
-pointsY(pointCount) = y + 1
-pointsZ(pointCount) = z - .5
-
-pointCount = pointCount + 1
-pointsX(pointCount) = x + .5
-pointsY(pointCount) = y + 1
-pointsZ(pointCount) = z + .5
-
-pointCount = pointCount + 1
-pointsX(pointCount) = x - .5
-pointsY(pointCount) = y + 1
-pointsZ(pointCount) = z + .5
-
-END SUB
-
-SUB RenderScene
-
-sineAngle1 = SIN(angle1)
-cosineAngle1 = COS(angle1)
-sineAngle2 = SIN(angle2)
-cosineAngle2 = COS(angle2)
-
-FOR a = 1 TO pointCount
-x = pointsX(a) + myPositionX
-y = pointsY(a) - myPositionY
-z = pointsZ(a) + myPositionZ
-
-x1 = x * sineAngle1 - z * cosineAngle1
-z1 = x * cosineAngle1 + z * sineAngle1
-y1 = y * sineAngle2 - z1 * cosineAngle2
-z2 = y * cosineAngle2 + z1 * sineAngle2
-
-IF z2 < .5 THEN
-renderedPointsX(a) = -1
-ELSE
-renderedPointsX(a) = 320 + (x1 / z2 * 400)
-renderedPointsY(a) = 240 - (y1 / z2 * 400)
-END IF
-NEXT a
-
-FOR a = 1 TO lineCount
-l1 = originalLineVertices1(a)
-l2 = originalLineVertices2(a)
-
-IF originalRenderedPointsX(l1) = -1 OR originalRenderedPointsX(l2) = -1 THEN
-ELSE
-LINE (originalRenderedPointsX(l1), originalRenderedPointsY(l1))-(originalRenderedPointsX(l2), originalRenderedPointsY(l2)), 0
-END IF
-
-l1 = lineVertices1(a)
-l2 = lineVertices2(a)
-IF renderedPointsX(l1) = -1 OR renderedPointsX(l2) = -1 THEN
-ELSE
-LINE (renderedPointsX(l1), renderedPointsY(l1))-(renderedPointsX(l2), renderedPointsY(l2)), lineColors(a)
-END IF
-NEXT a
-
-IF lineCount < oldLineCount THEN
-FOR a = lineCount + 1 TO oldLineCount
-l1 = originalLineVertices1(a)
-l2 = originalLineVertices2(a)
-IF originalRenderedPointsX(l1) = -1 OR originalRenderedPointsX(l2) = -1 THEN
-ELSE
-LINE (originalRenderedPointsX(l1), originalRenderedPointsY(l1))-(originalRenderedPointsX(l2), originalRenderedPointsY(l2)), 0
-END IF
-NEXT a
-END IF
-
-FOR a = 1 TO pointCount
-originalRenderedPointsX(a) = renderedPointsX(a)
-originalRenderedPointsY(a) = renderedPointsY(a)
-NEXT a
-
-oldPointCount = pointCount
-
-FOR a = 1 TO lineCount
-originalLineVertices1(a) = lineVertices1(a)
-originalLineVertices2(a) = lineVertices2(a)
-NEXT a
-
-oldLineCount = lineCount
-
-END SUB
-
-SUB StartGame
-SCREEN 12
-numPoints = 0
-numLines = 0
-pointCount = numPoints
-lineCount = numLines
-gridSize = 50
-
-myPositionX = 4
-myPositionY = 15
-myPositionZ = 17
-angle1 = ATN(1) / 2 - .29
-angle2 = angle1 + 1
-
-FOR a = 1 TO 1000
-lineColors(a) = 4
-NEXT a
-
-FOR a = 1 TO 1000
-originalLineVertices1(a) = 1
-originalLineVertices2(a) = 1
-NEXT a
-
-OPEN "3dlife.dat" FOR INPUT AS #1
-y = 20
-20
-IF EOF(1) <> 0 THEN GOTO 30
-x = 20
-
-LINE INPUT #1, inputLine$
-FOR b = 1 TO LEN(inputLine$)
- c$ = RIGHT$(LEFT$(inputLine$, b), 1)
- IF c$ = "#" THEN gameOfLifeGrid(x, y) = 1
- x = x + 1
-NEXT b
-
-y = y + 1
-GOTO 20
-30
-CLOSE #1
-
-END SUB
+++ /dev/null
-.....#.#.....\r
-...##...##...\r
-..#.......#..\r
-.#..##.##..#.\r
-.#.#.....#.#.\r
-#..#.###.#..#\r
-.....#.#.....\r
-#..#.###.#..#\r
-.#.#.....#.#.\r
-.#..##.##..#.\r
-..#.......#..\r
-...##...##...\r
-.....#.#.....\r
+++ /dev/null
-' Renders 3D text within 3D room.\r
-' User can freely fly around the room and observe the text from different angles.\r
-'\r
-' By Svjatoslav Agejenko.\r
-' Email: svjatoslav@svjatoslav.eu\r
-' Homepage: http://www.svjatoslav.eu\r
-'\r
-' Changelog:\r
-' 2003, Initial version\r
-' 2024, Improved program readability using AI\r
-'\r
-' Keyboard controls:\r
-' cursor keys and to z, w - rotate\r
-' <SPACE> - slow down\r
-' q and <ESC> - quit program\r
-' + / - - move up / down\r
-\r
-\r
-\r
-DECLARE SUB prn (x!, y!, a$)\r
-DECLARE SUB pch (x!, y!, a$)\r
-DECLARE SUB readfnt ()\r
-DECLARE SUB ruut2 (x!, y!, z!, s!)\r
-DECLARE SUB ruut (x!, y!, z!, s!)\r
-DECLARE SUB kuus (x, y, z, s)\r
-DECLARE SUB porand ()\r
-DECLARE SUB addp (x, y, z)\r
-\r
-DECLARE SUB start ()\r
-DECLARE SUB addsq (x1%, y1%, z1%)\r
-DECLARE SUB getcor ()\r
-DECLARE SUB mulcor ()\r
-DECLARE SUB nait3d ()\r
-DECLARE SUB calcsin ()\r
-DIM SHARED xn(4000), yn(4000), zn(4000)\r
-DIM SHARED x(4000), y(4000), z(4000)\r
-\r
-DIM SHARED xo(4000), yo(4000), zo(4000)\r
-DIM SHARED point1(4000), point2(4000)\r
-DIM SHARED col(4000)\r
-DIM SHARED nump, numl\r
-DIM SHARED myx, myy, myz, mye, myk\r
-DIM SHARED tpx(0 TO 10, 0 TO 255)\r
-DIM SHARED tpy(0 TO 10, 0 TO 255)\r
-DIM SHARED tl1(0 TO 10, 0 TO 255)\r
-DIM SHARED tl2(0 TO 10, 0 TO 255)\r
-\r
-myx = 0\r
-myy = 0\r
-myz = -100\r
-\r
-start\r
-\r
-nait3d\r
-\r
-SUB getcor\r
-\r
-' Define the corners of a cube\r
-xn(nump + 1) = -150\r
-yn(nump + 1) = -125\r
-zn(nump + 1) = -200\r
-\r
-xn(nump + 2) = 150\r
-yn(nump + 2) = -125\r
-zn(nump + 2) = -200\r
-\r
-xn(nump + 3) = 150\r
-yn(nump + 3) = 125\r
-zn(nump + 3) = -200\r
-\r
-xn(nump + 4) = -150\r
-yn(nump + 4) = 125\r
-zn(nump + 4) = -200\r
-\r
-xn(nump + 5) = -150\r
-yn(nump + 5) = -125\r
-zn(nump + 5) = 200\r
-\r
-xn(nump + 6) = 150\r
-yn(nump + 6) = -125\r
-zn(nump + 6) = 200\r
-\r
-xn(nump + 7) = 150\r
-yn(nump + 7) = 125\r
-zn(nump + 7) = 200\r
-\r
-xn(nump + 8) = -150\r
-yn(nump + 8) = 125\r
-zn(nump + 8) = 200\r
-\r
-' Define the lines connecting the corners\r
-point1(numl + 1) = nump + 1\r
-point2(numl + 1) = nump + 2\r
-\r
-point1(numl + 2) = nump + 2\r
-point2(numl + 2) = nump + 3\r
-\r
-point1(numl + 3) = nump + 3\r
-point2(numl + 3) = nump + 4\r
-\r
-point1(numl + 4) = nump + 4\r
-point2(numl + 4) = nump + 1\r
-\r
-point1(numl + 5) = nump + 5\r
-point2(numl + 5) = nump + 6\r
-\r
-point1(numl + 6) = nump + 6\r
-point2(numl + 6) = nump + 7\r
-\r
-point1(numl + 7) = nump + 7\r
-point2(numl + 7) = nump + 8\r
-\r
-point1(numl + 8) = nump + 8\r
-point2(numl + 8) = nump + 5\r
-\r
-point1(numl + 9) = nump + 5\r
-point2(numl + 9) = nump + 1\r
-\r
-point1(numl + 10) = nump + 6\r
-point2(numl + 10) = nump + 2\r
-\r
-point1(numl + 11) = nump + 7\r
-point2(numl + 11) = nump + 3\r
-\r
-point1(numl + 12) = nump + 8\r
-point2(numl + 12) = nump + 4\r
-\r
-nump = nump + 8\r
-numl = numl + 12\r
-\r
-' Define the corners of rectangle\r
-xn(nump + 1) = -150\r
-yn(nump + 1) = -125 + 201\r
-zn(nump + 1) = 0\r
-\r
-xn(nump + 2) = -150\r
-yn(nump + 2) = -125 + 201\r
-zn(nump + 2) = 89\r
-\r
-xn(nump + 3) = -150\r
-yn(nump + 3) = -125\r
-zn(nump + 3) = 89\r
-\r
-xn(nump + 4) = -150\r
-yn(nump + 4) = -125\r
-zn(nump + 4) = 0\r
-\r
-' Define the lines connecting these corners\r
-point1(numl + 1) = nump + 1\r
-point2(numl + 1) = nump + 2\r
-\r
-point1(numl + 2) = nump + 2\r
-point2(numl + 2) = nump + 3\r
-\r
-point1(numl + 3) = nump + 3\r
-point2(numl + 3) = nump + 4\r
-\r
-point1(numl + 4) = nump + 4\r
-point2(numl + 4) = nump + 1\r
-\r
-nump = nump + 4\r
-numl = numl + 4\r
-\r
-prn 0, 0, "three dimensional "\r
-prn 0, -3, "text example"\r
-prn 0, -6, "etc etc etc"\r
-\r
-END SUB\r
-\r
-SUB kuus (x, y, z, s)\r
-\r
-' Initialize variables\r
-b = 0\r
-f = .3925\r
-\r
-' Loop to create points of the octagon\r
-FOR a = 0 + f TO 6 + f STEP 6.28 / 8\r
- x1 = SIN(a) * s\r
- y1 = COS(a) * s\r
- b = b + 1\r
-\r
- ' Store the points in the shared arrays\r
- xn(nump + b) = x1 + x\r
- yn(nump + b) = y\r
- zn(nump + b) = y1 + z\r
-NEXT a\r
-\r
-' Define the lines connecting these points\r
-point1(numl + 1) = nump + 1\r
-point2(numl + 1) = nump + 2\r
-col(numl + 1) = 12\r
-\r
-point1(numl + 2) = nump + 2\r
-point2(numl + 2) = nump + 3\r
-col(numl + 2) = 12\r
-\r
-point1(numl + 3) = nump + 3\r
-point2(numl + 3) = nump + 4\r
-col(numl + 3) = 12\r
-\r
-point1(numl + 4) = nump + 4\r
-point2(numl + 4) = nump + 5\r
-col(numl + 4) = 12\r
-\r
-point1(numl + 5) = nump + 5\r
-point2(numl + 5) = nump + 6\r
-col(numl + 5) = 12\r
-\r
-point1(numl + 6) = nump + 6\r
-point2(numl + 6) = nump + 7\r
-col(numl + 6) = 12\r
-\r
-point1(numl + 7) = nump + 7\r
-point2(numl + 7) = nump + 8\r
-col(numl + 7) = 12\r
-\r
-point1(numl + 8) = nump + 8\r
-point2(numl + 8) = nump + 1\r
-col(numl + 8) = 12\r
-\r
-nump = nump + b\r
-numl = numl + 8\r
-\r
-'LOCATE 1, 1\r
-'PRINT b\r
-\r
-END SUB\r
-\r
-SUB nait3d\r
-\r
-' Main loop for the 3D rendering\r
-1\r
-\r
-myx = myx + SIN(deg1) * mye\r
-myz = myz + COS(deg1) * mye\r
-\r
-myx = myx + COS(deg1) * myk\r
-myz = myz - SIN(deg1) * myk\r
-\r
-deg1 = deg1 + d1\r
-Deg2 = Deg2 + d2\r
-\r
-C1 = COS(deg1): S1 = SIN(deg1)\r
-C2 = COS(Deg2): S2 = SIN(Deg2)\r
-\r
-' Transform the coordinates\r
-FOR a = 1 TO nump\r
- xo = xn(a) - myx\r
- yo = -yn(a) - myy\r
- zo = zn(a) - myz\r
-\r
- x1 = (xo * C1 - zo * S1)\r
- z1 = (xo * S1 + zo * C1)\r
-\r
- y1 = (yo * C2 - z1 * S2)\r
- z2 = (yo * S2 + z1 * C2)\r
-\r
- ' Store the transformed coordinates\r
- xo(a) = x(a)\r
- yo(a) = y(a)\r
-\r
- ' Check if the point is within the view\r
- IF z2 < 20 THEN\r
- x(a) = -1\r
- ELSE\r
- ' Apply perspective transformation\r
- x(a) = 320 + (x1 / z2 * 500)\r
- y(a) = 240 + (y1 / z2 * 500)\r
- END IF\r
-NEXT\r
-\r
-' Draw the lines\r
-FOR a = 1 TO numl\r
- p1 = point1(a)\r
- p2 = point2(a)\r
-\r
- ' Check if the points are within the view\r
- IF xo(p1) = -1 OR xo(p2) = -1 THEN\r
- ' Do nothing\r
- ELSE\r
- ' erase line at old coordinates\r
- LINE (xo(p1), yo(p1))-(xo(p2), yo(p2)), 0\r
- END IF\r
-\r
- IF x(p1) = -1 OR x(p2) = -1 THEN\r
- ' Do nothing\r
- ELSE\r
- ' draw line at new coordinates\r
- LINE (x(p1), y(p1))-(x(p2), y(p2)), col(a)\r
- END IF\r
-NEXT\r
-\r
-' Handle user input\r
-K$ = INKEY$\r
-IF K$ <> "" THEN\r
-\r
- SELECT CASE K$\r
-\r
- CASE CHR$(0) + "P"\r
- mye = mye - 1\r
-\r
- CASE CHR$(0) + "H"\r
- mye = mye + 1\r
-\r
- CASE CHR$(0) + "M"\r
- myk = myk + 1\r
-\r
- CASE CHR$(0) + "K"\r
- myk = myk - 1\r
-\r
- CASE "+"\r
- myy = myy + 3\r
-\r
- CASE "-"\r
- myy = myy - 3\r
-\r
- CASE "6"\r
- d1 = d1 + .01\r
-\r
- CASE "4"\r
- d1 = d1 - .01\r
-\r
- CASE "8"\r
- d2 = d2 - .01\r
-\r
- CASE "2"\r
- d2 = d2 + .01\r
-\r
- CASE " "\r
- d1 = d1 / 2\r
- d2 = d2 / 2\r
- d3 = d3 / 2\r
- mye = mye / 2\r
- myk = myk / 2\r
-\r
- CASE "q"\r
- SYSTEM\r
-\r
- CASE CHR$(27)\r
- SYSTEM\r
-\r
- END SELECT\r
-END IF\r
-\r
-GOTO 1\r
-\r
-END SUB\r
-\r
-SUB pch (x, y, a$)\r
-\r
-' Initialize variables\r
-b = ASC(a$)\r
-up = 0\r
-ul = 0\r
-\r
-' Loop to create points for the character\r
-FOR c = 0 TO 100\r
- IF tpx(c, b) = 999 THEN GOTO 4\r
- up = up + 1\r
- xn(nump + up) = x + tpx(c, b)\r
- yn(nump + up) = y - tpy(c, b)\r
- zn(nump + up) = 0\r
-NEXT c\r
-4\r
-\r
-' Loop to define the lines for the character\r
-FOR c = 0 TO 100\r
- IF tl1(c, b) = 999 THEN GOTO 5\r
- ul = ul + 1\r
- point1(numl + ul) = tl1(c, b) + nump + 1\r
- point2(numl + ul) = tl2(c, b) + nump + 1\r
- col(numl + ul) = 4\r
-NEXT c\r
-5\r
-\r
-' Update the counters\r
-nump = nump + up\r
-numl = numl + ul\r
-\r
-END SUB\r
-\r
-SUB porand\r
-' do floor of the 3D room\r
-\r
-' Loop to create floor tiles made of hexagons and squares\r
-FOR x = -100 TO 0 STEP 12.067 + .3\r
- FOR z = -100 TO 0 STEP 12.067 + .3\r
- kuus x, -125, z, 6.53\r
- ruut x + 6.033 + .15, -125, z + 6.033 + .15, 3.111 + .3\r
- NEXT z\r
-NEXT x\r
-\r
-' Loop to create squares\r
-FOR y = -100 TO 0 STEP 20.3\r
- FOR x = -100 TO 0 STEP 20.3\r
- ruut2 x, y, 200, 10\r
- NEXT x\r
-NEXT y\r
-\r
-END SUB\r
-\r
-SUB prn (x, y, a$)\r
-\r
-' Loop to print each character\r
-FOR b = 1 TO LEN(a$)\r
- c$ = RIGHT$(LEFT$(a$, b), 1)\r
- pch x + b * 3, y, c$\r
-NEXT b\r
-\r
-END SUB\r
-\r
-SUB readfnt\r
-\r
-' Open the font file\r
-OPEN "font.dat" FOR INPUT AS #1\r
-\r
-' Loop to read the font data\r
-3\r
-IF EOF(1) <> 0 THEN GOTO 2\r
-LINE INPUT #1, a$\r
-\r
-IF LEFT$(a$, 1) = "#" THEN\r
- chr = ASC(RIGHT$(LEFT$(a$, 3), 1))\r
-\r
- ' Initialize counters\r
- pp = 0\r
- lp = 0\r
-END IF\r
-\r
-' read the points for the character\r
-IF LEFT$(a$, 1) = "p" THEN\r
- tpx(pp, chr) = VAL(RIGHT$(LEFT$(a$, 3), 1))\r
- tpy(pp, chr) = VAL(RIGHT$(LEFT$(a$, 5), 1))\r
- pp = pp + 1\r
-END IF\r
-\r
-' read the lines for the character\r
-IF LEFT$(a$, 1) = "l" THEN\r
- tl1(lp, chr) = VAL(RIGHT$(LEFT$(a$, 3), 1))\r
- tl2(lp, chr) = VAL(RIGHT$(LEFT$(a$, 5), 1))\r
- lp = lp + 1\r
-END IF\r
-\r
-GOTO 3\r
-\r
-' Close the font file\r
-2\r
-CLOSE #1\r
-\r
-END SUB\r
-\r
-SUB ruut (x, y, z, s)\r
-\r
-' Define the corners of the rectangle\r
-xn(nump + 1) = x\r
-yn(nump + 1) = y\r
-zn(nump + 1) = z + s\r
-\r
-xn(nump + 2) = x + s\r
-yn(nump + 2) = y\r
-zn(nump + 2) = z\r
-\r
-xn(nump + 3) = x\r
-yn(nump + 3) = y\r
-zn(nump + 3) = z - s\r
-\r
-xn(nump + 4) = x - s\r
-yn(nump + 4) = y\r
-zn(nump + 4) = z\r
-\r
-' Define the lines connecting these corners\r
-point1(numl + 1) = nump + 1\r
-point2(numl + 1) = nump + 2\r
-col(numl + 1) = 10\r
-\r
-point1(numl + 2) = nump + 2\r
-point2(numl + 2) = nump + 3\r
-col(numl + 2) = 10\r
-\r
-point1(numl + 3) = nump + 3\r
-point2(numl + 3) = nump + 4\r
-col(numl + 3) = 10\r
-\r
-point1(numl + 4) = nump + 4\r
-point2(numl + 4) = nump + 1\r
-col(numl + 4) = 10\r
-\r
-' Update the counters\r
-nump = nump + 4\r
-numl = numl + 4\r
-\r
-END SUB\r
-\r
-SUB ruut2 (x, y, z, s)\r
-\r
-' Define the corners of the rectangle\r
-xn(nump + 1) = x - s\r
-yn(nump + 1) = y - s\r
-zn(nump + 1) = z\r
-\r
-xn(nump + 2) = x + s\r
-yn(nump + 2) = y - s\r
-zn(nump + 2) = z\r
-\r
-xn(nump + 3) = x + s\r
-yn(nump + 3) = y + s\r
-zn(nump + 3) = z\r
-\r
-xn(nump + 4) = x - s\r
-yn(nump + 4) = y + s\r
-zn(nump + 4) = z\r
-\r
-' Define the lines connecting these corners\r
-point1(numl + 1) = nump + 1\r
-point2(numl + 1) = nump + 2\r
-col(numl + 1) = 14\r
-\r
-point1(numl + 2) = nump + 2\r
-point2(numl + 2) = nump + 3\r
-col(numl + 2) = 14\r
-\r
-point1(numl + 3) = nump + 3\r
-point2(numl + 3) = nump + 4\r
-col(numl + 3) = 14\r
-\r
-point1(numl + 4) = nump + 4\r
-point2(numl + 4) = nump + 1\r
-col(numl + 4) = 14\r
-\r
-' Update the counters\r
-nump = nump + 4\r
-numl = numl + 4\r
-\r
-END SUB\r
-\r
-SUB start\r
-\r
-' Initialize the screen and clear it\r
-SCREEN 12\r
-CLS\r
-\r
-' Set the default color for all points\r
-FOR a = 1 TO 4000\r
- col(a) = 15\r
-NEXT a\r
-\r
-' Initialize counters\r
-nump = 0\r
-numl = 0\r
-\r
-' Initialize font data\r
-FOR a = 0 TO 255\r
- FOR b = 0 TO 10\r
- tpx(b, a) = 999\r
- tpy(b, a) = 999\r
- tl1(b, a) = 999\r
- tl2(b, a) = 999\r
- NEXT b\r
-NEXT a\r
-\r
-' Read the font data\r
-readfnt\r
-\r
-' Define the corners of the cubes\r
-getcor\r
-\r
-END SUB\r
--- /dev/null
+' Program renders 3D room with various decorative tiles on the wall and on the floor.\r
+' User can freely fly around and look at the room from different angles.\r
+'\r
+' By Svjatoslav Agejenko.\r
+' Email: svjatoslav@svjatoslav.eu\r
+' Homepage: http://www.svjatoslav.eu\r
+'\r
+' Changelog:\r
+' ?, Initial version\r
+' 2024, Improved program readability using AI\r
+'\r
+' Keyboard controls:\r
+' <left>, <right>, <up>, <down> - move around\r
+' 2, 6, 4, 8 - look around (number pad)\r
+' <SPACE> - speed down\r
+' q - quit\r
+' + / - - move up / down\r
+'\r
+\r
+\r
+DECLARE SUB renderSquare2 (x!, y!, z!, s!)\r
+DECLARE SUB renderSquare (x%, y%, z%, s%)\r
+DECLARE SUB renderHexagon (x!, y!, z!, s!)\r
+DECLARE SUB generateCube ()\r
+\r
+DECLARE SUB start ()\r
+DECLARE SUB addSquare (x1%, y1%, z1%)\r
+DECLARE SUB getCornerVertices ()\r
+DECLARE SUB multiplyCoordinates ()\r
+DECLARE SUB calculateSine ()\r
+DIM SHARED xVertex(4000), yVertex(4000), zVertex(4000)\r
+DIM SHARED xCoordinate(4000), yCoordinate(4000), zCoordinate(4000)\r
+\r
+DIM SHARED xOriginal(4000), yOriginal(4000), zOriginal(4000)\r
+DIM SHARED point1Vertex(4000), point2Vertex(4000)\r
+DIM SHARED col(4000)\r
+DIM SHARED vertexCount, edgeCount\r
+DIM SHARED myx, myy, myz, mye, myk\r
+\r
+myx = 0\r
+myy = 0\r
+myz = -1000\r
+\r
+start\r
+\r
+nait3d\r
+\r
+SUB addSquare (x1%, y1%, z1%)\r
+ c = 1\r
+\r
+ ' Define the vertices of a square in 3D space\r
+ xVertex(vertexCount + 1) = -100 + x1\r
+ yVertex(vertexCount + 1) = y1\r
+ zVertex(vertexCount + 1) = -100 + z1\r
+\r
+ xVertex(vertexCount + 2) = 100 + x1\r
+ yVertex(vertexCount + 2) = y1\r
+ zVertex(vertexCount + 2) = -100 + z1\r
+\r
+ xVertex(vertexCount + 3) = 100 + x1\r
+ yVertex(vertexCount + 3) = y1\r
+ zVertex(vertexCount + 3) = 100 + z1\r
+\r
+ xVertex(vertexCount + 4) = -100 + x1\r
+ yVertex(vertexCount + 4) = y1\r
+ zVertex(vertexCount + 4) = 100 + z1\r
+\r
+ ' Define the edges of the square\r
+ point1Vertex(edgeCount + 1) = vertexCount + 1\r
+ point2Vertex(edgeCount + 1) = vertexCount + 2\r
+ col(edgeCount + 1) = c\r
+\r
+ point1Vertex(edgeCount + 2) = vertexCount + 2\r
+ point2Vertex(edgeCount + 2) = vertexCount + 3\r
+ col(edgeCount + 2) = c\r
+\r
+ point1Vertex(edgeCount + 3) = vertexCount + 3\r
+ point2Vertex(edgeCount + 3) = vertexCount + 4\r
+ col(edgeCount + 3) = c\r
+\r
+ point1Vertex(edgeCount + 4) = vertexCount + 4\r
+ point2Vertex(edgeCount + 4) = vertexCount + 1\r
+ col(edgeCount + 4) = c\r
+\r
+ ' Update the counters for the next square\r
+ vertexCount = vertexCount + 4\r
+ edgeCount = edgeCount + 4\r
+\r
+END SUB\r
+\r
+SUB getCornerVertices\r
+\r
+ ' Define the vertices of a square in 3D space\r
+ xVertex(vertexCount + 1) = -150\r
+ yVertex(vertexCount + 1) = -125\r
+ zVertex(vertexCount + 1) = -200\r
+\r
+ xVertex(vertexCount + 2) = 150\r
+ yVertex(vertexCount + 2) = -125\r
+ zVertex(vertexCount + 2) = -200\r
+\r
+ xVertex(vertexCount + 3) = 150\r
+ yVertex(vertexCount + 3) = 125\r
+ zVertex(vertexCount + 3) = -200\r
+\r
+ xVertex(vertexCount + 4) = -150\r
+ yVertex(vertexCount + 4) = 125\r
+ zVertex(vertexCount + 4) = -200\r
+\r
+ ' Define the edges of the square\r
+ point1Vertex(edgeCount + 1) = vertexCount + 1\r
+ point2Vertex(edgeCount + 1) = vertexCount + 2\r
+\r
+ point1Vertex(edgeCount + 2) = vertexCount + 2\r
+ point2Vertex(edgeCount + 2) = vertexCount + 3\r
+\r
+ point1Vertex(edgeCount + 3) = vertexCount + 3\r
+ point2Vertex(edgeCount + 3) = vertexCount + 4\r
+\r
+ point1Vertex(edgeCount + 4) = vertexCount + 4\r
+ point2Vertex(edgeCount + 4) = vertexCount + 1\r
+\r
+ ' Define the vertices of another square in 3D space\r
+ xVertex(vertexCount + 5) = -150\r
+ yVertex(vertexCount + 5) = -125\r
+ zVertex(vertexCount + 5) = 200\r
+\r
+ xVertex(vertexCount + 6) = 150\r
+ yVertex(vertexCount + 6) = -125\r
+ zVertex(vertexCount + 6) = 200\r
+\r
+ xVertex(vertexCount + 7) = 150\r
+ yVertex(vertexCount + 7) = 125\r
+ zVertex(vertexCount + 7) = 200\r
+\r
+ xVertex(vertexCount + 8) = -150\r
+ yVertex(vertexCount + 8) = 125\r
+ zVertex(vertexCount + 8) = 200\r
+\r
+ ' Define the edges of the second square\r
+ point1Vertex(edgeCount + 5) = vertexCount + 5\r
+ point2Vertex(edgeCount + 5) = vertexCount + 6\r
+\r
+ point1Vertex(edgeCount + 6) = vertexCount + 6\r
+ point2Vertex(edgeCount + 6) = vertexCount + 7\r
+\r
+ point1Vertex(edgeCount + 7) = vertexCount + 7\r
+ point2Vertex(edgeCount + 7) = vertexCount + 8\r
+\r
+ point1Vertex(edgeCount + 8) = vertexCount + 8\r
+ point2Vertex(edgeCount + 8) = vertexCount + 5\r
+\r
+ ' Define the edges connecting the two squares into cube\r
+ point1Vertex(edgeCount + 9) = vertexCount + 5\r
+ point2Vertex(edgeCount + 9) = vertexCount + 1\r
+\r
+ point1Vertex(edgeCount + 10) = vertexCount + 6\r
+ point2Vertex(edgeCount + 10) = vertexCount + 2\r
+\r
+ point1Vertex(edgeCount + 11) = vertexCount + 7\r
+ point2Vertex(edgeCount + 11) = vertexCount + 3\r
+\r
+ point1Vertex(edgeCount + 12) = vertexCount + 8\r
+ point2Vertex(edgeCount + 12) = vertexCount + 4\r
+\r
+ ' Update the counters for the next set of vertices and edges\r
+ vertexCount = vertexCount + 8\r
+ edgeCount = edgeCount + 12\r
+\r
+ ' Define a pyramid in 3D space\r
+ xVertex(vertexCount + 1) = -150\r
+ yVertex(vertexCount + 1) = -125 + 201\r
+ zVertex(vertexCount + 1) = 0\r
+\r
+ xVertex(vertexCount + 2) = -150\r
+ yVertex(vertexCount + 2) = -125 + 201\r
+ zVertex(vertexCount + 2) = 89\r
+\r
+ xVertex(vertexCount + 3) = -150\r
+ yVertex(vertexCount + 3) = -125\r
+ zVertex(vertexCount + 3) = 89\r
+\r
+ xVertex(vertexCount + 4) = -150\r
+ yVertex(vertexCount + 4) = -125\r
+ zVertex(vertexCount + 4) = 0\r
+\r
+ ' Define the edges of the pyramid\r
+ point1Vertex(edgeCount + 1) = vertexCount + 1\r
+ point2Vertex(edgeCount + 1) = vertexCount + 2\r
+\r
+ point1Vertex(edgeCount + 2) = vertexCount + 2\r
+ point2Vertex(edgeCount + 2) = vertexCount + 3\r
+\r
+ point1Vertex(edgeCount + 3) = vertexCount + 3\r
+ point2Vertex(edgeCount + 3) = vertexCount + 4\r
+\r
+ point1Vertex(edgeCount + 4) = vertexCount + 4\r
+ point2Vertex(edgeCount + 4) = vertexCount + 1\r
+\r
+ ' Update the counters for the next set of vertices and edges\r
+ vertexCount = vertexCount + 4\r
+ edgeCount = edgeCount + 4\r
+\r
+porand\r
+\r
+END SUB\r
+\r
+SUB renderHexagon (x, y, z, s)\r
+\r
+b = 0\r
+f = .3925\r
+' Calculate the vertices of a hexagon in 3D space\r
+FOR a = 0 + f TO 6 + f STEP 6.28 / 8\r
+ x1 = SIN(a) * s\r
+ y1 = COS(a) * s\r
+ b = b + 1\r
+\r
+ xVertex(vertexCount + b) = x + x1\r
+ yVertex(vertexCount + b) = y\r
+ zVertex(vertexCount + b) = z + y1\r
+\r
+NEXT a\r
+\r
+' Define the edges of the hexagon\r
+point1Vertex(edgeCount + 1) = vertexCount + 1\r
+point2Vertex(edgeCount + 1) = vertexCount + 2\r
+col(edgeCount + 1) = 12\r
+\r
+point1Vertex(edgeCount + 2) = vertexCount + 2\r
+point2Vertex(edgeCount + 2) = vertexCount + 3\r
+col(edgeCount + 2) = 12\r
+\r
+point1Vertex(edgeCount + 3) = vertexCount + 3\r
+point2Vertex(edgeCount + 3) = vertexCount + 4\r
+col(edgeCount + 3) = 12\r
+\r
+point1Vertex(edgeCount + 4) = vertexCount + 4\r
+point2Vertex(edgeCount + 4) = vertexCount + 5\r
+col(edgeCount + 4) = 12\r
+\r
+point1Vertex(edgeCount + 5) = vertexCount + 5\r
+point2Vertex(edgeCount + 5) = vertexCount + 6\r
+col(edgeCount + 5) = 12\r
+\r
+point1Vertex(edgeCount + 6) = vertexCount + 6\r
+point2Vertex(edgeCount + 6) = vertexCount + 7\r
+col(edgeCount + 6) = 12\r
+\r
+point1Vertex(edgeCount + 7) = vertexCount + 7\r
+point2Vertex(edgeCount + 7) = vertexCount + 8\r
+col(edgeCount + 7) = 12\r
+\r
+point1Vertex(edgeCount + 8) = vertexCount + 8\r
+point2Vertex(edgeCount + 8) = vertexCount + 1\r
+col(edgeCount + 8) = 12\r
+\r
+' Update the counters for the next set of vertices and edges\r
+vertexCount = vertexCount + b\r
+edgeCount = edgeCount + 8\r
+\r
+END SUB\r
+\r
+SUB nait3d\r
+\r
+ ' Main loop to render the 3D scene\r
+1\r
+\r
+ ' Update the position based on rotation\r
+ myx = myx + SIN(deg1) * mye\r
+ myz = myz + COS(deg1) * mye\r
+\r
+ myx = myx + COS(deg1) * myk\r
+ myz = myz - SIN(deg1) * myk\r
+\r
+ ' Update the rotation angles\r
+ deg1 = deg1 + d1\r
+ Deg2 = Deg2 + d2\r
+\r
+ ' Calculate the rotation matrices\r
+ C1 = COS(deg1): S1 = SIN(deg1)\r
+ C2 = COS(Deg2): S2 = SIN(Deg2)\r
+\r
+ ' Apply the rotation to each vertex\r
+ FOR a = 1 TO vertexCount\r
+ xo = xVertex(a) - myx\r
+ yo = -yVertex(a) - myy\r
+ zo = zVertex(a) - myz\r
+\r
+ x1 = (xo * C1 - zo * S1)\r
+ z1 = (xo * S1 + zo * C1)\r
+\r
+ y1 = (yo * C2 - z1 * S2)\r
+ z2 = (yo * S2 + z1 * C2)\r
+\r
+ ' Project the vertex onto the 2D screen\r
+ xOriginal(a) = xCoordinate(a)\r
+ yOriginal(a) = yCoordinate(a)\r
+ IF z2 < 20 THEN\r
+ xCoordinate(a) = -1\r
+ ELSE\r
+ xCoordinate(a) = 320 + (x1 / z2 * 500)\r
+ yCoordinate(a) = 240 + (y1 / z2 * 500)\r
+ END IF\r
+ NEXT\r
+\r
+ ' Draw the edges of each shape\r
+ FOR a = 1 TO edgeCount\r
+ p1 = point1Vertex(a)\r
+ p2 = point2Vertex(a)\r
+ IF xOriginal(p1) = -1 OR xOriginal(p2) = -1 THEN\r
+ ' Skip drawing if the vertex is off-screen\r
+ ELSE\r
+ ' erase edge on old coordinates\r
+ LINE (xOriginal(p1), yOriginal(p1))-(xOriginal(p2), yOriginal(p2)), 0\r
+ END IF\r
+\r
+ IF xCoordinate(p1) = -1 OR xCoordinate(p2) = -1 THEN\r
+ ' Skip drawing if the vertex is off-screen\r
+ ELSE\r
+ ' draw edge on new coordinates\r
+ LINE (xCoordinate(p1), yCoordinate(p1))-(xCoordinate(p2), yCoordinate(p2)), col(a)\r
+ END IF\r
+ NEXT\r
+\r
+ ' Handle user input\r
+ K$ = INKEY$\r
+ IF K$ <> "" THEN\r
+\r
+ SELECT CASE K$\r
+\r
+ CASE CHR$(0) + "P"\r
+ mye = mye - 3\r
+\r
+ CASE CHR$(0) + "H"\r
+ mye = mye + 3\r
+\r
+ CASE CHR$(0) + "M"\r
+ myk = myk + 3\r
+\r
+ CASE CHR$(0) + "K"\r
+ myk = myk - 3\r
+\r
+ CASE "+"\r
+ myy = myy + 3\r
+\r
+ CASE "-"\r
+ myy = myy - 3\r
+\r
+ CASE "6"\r
+ d1 = d1 + .01\r
+\r
+ CASE "4"\r
+ d1 = d1 - .01\r
+\r
+ CASE "8"\r
+ d2 = d2 - .01\r
+\r
+ CASE "2"\r
+ d2 = d2 + .01\r
+\r
+ CASE " "\r
+ d1 = d1 / 2\r
+ d2 = d2 / 2\r
+ d3 = d3 / 2\r
+ mye = mye / 2\r
+ myk = myk / 2\r
+\r
+ CASE "q"\r
+ SYSTEM\r
+\r
+ CASE CHR$(27)\r
+ SYSTEM\r
+ END SELECT\r
+ END IF\r
+\r
+ ' Continue the main loop\r
+ GOTO 1\r
+END SUB\r
+\r
+SUB porand\r
+\r
+ ' Generate a grid of shapes in 3D space\r
+ FOR x = -100 TO 0 STEP 12.067 + .3\r
+ FOR z = -100 TO 0 STEP 12.067 + .3\r
+ renderHexagon x, -125, z, 6.53\r
+ renderSquare x + 6.033 + .15, -125, z + 6.033 + .15, 3.111 + .3\r
+ NEXT z\r
+ NEXT x\r
+\r
+ ' Generate another grid of shapes in 3D space\r
+ FOR y = -100 TO 0 STEP 20.3\r
+ FOR x = -100 TO 0 STEP 20.3\r
+ renderSquare2 x, y, 200, 10\r
+ NEXT x\r
+ NEXT y\r
+\r
+END SUB\r
+\r
+SUB renderSquare (x%, y%, z%, s%)\r
+\r
+ ' Define the vertices of a square in 3D space\r
+ xVertex(vertexCount + 1) = x%\r
+ yVertex(vertexCount + 1) = y%\r
+ zVertex(vertexCount + 1) = z% + s%\r
+\r
+ xVertex(vertexCount + 2) = x% + s%\r
+ yVertex(vertexCount + 2) = y%\r
+ zVertex(vertexCount + 2) = z%\r
+\r
+ xVertex(vertexCount + 3) = x%\r
+ yVertex(vertexCount + 3) = y%\r
+ zVertex(vertexCount + 3) = z% - s%\r
+\r
+ xVertex(vertexCount + 4) = x% - s%\r
+ yVertex(vertexCount + 4) = y%\r
+ zVertex(vertexCount + 4) = z%\r
+\r
+ ' Define the edges of the square\r
+ point1Vertex(edgeCount + 1) = vertexCount + 1\r
+ point2Vertex(edgeCount + 1) = vertexCount + 2\r
+ col(edgeCount + 1) = 10\r
+\r
+ point1Vertex(edgeCount + 2) = vertexCount + 2\r
+ point2Vertex(edgeCount + 2) = vertexCount + 3\r
+ col(edgeCount + 2) = 10\r
+\r
+ point1Vertex(edgeCount + 3) = vertexCount + 3\r
+ point2Vertex(edgeCount + 3) = vertexCount + 4\r
+ col(edgeCount + 3) = 10\r
+\r
+ point1Vertex(edgeCount + 4) = vertexCount + 4\r
+ point2Vertex(edgeCount + 4) = vertexCount + 1\r
+ col(edgeCount + 4) = 10\r
+\r
+ ' Update the counters for the next square\r
+ vertexCount = vertexCount + 4\r
+ edgeCount = edgeCount + 4\r
+\r
+END SUB\r
+\r
+SUB renderSquare2 (x, y, z, s)\r
+\r
+ ' Define the vertices of a square in 3D space\r
+ xVertex(vertexCount + 1) = x - s\r
+ yVertex(vertexCount + 1) = y - s\r
+ zVertex(vertexCount + 1) = z\r
+\r
+ xVertex(vertexCount + 2) = x + s\r
+ yVertex(vertexCount + 2) = y - s\r
+ zVertex(vertexCount + 2) = z\r
+\r
+ xVertex(vertexCount + 3) = x + s\r
+ yVertex(vertexCount + 3) = y + s\r
+ zVertex(vertexCount + 3) = z\r
+\r
+ xVertex(vertexCount + 4) = x - s\r
+ yVertex(vertexCount + 4) = y + s\r
+ zVertex(vertexCount + 4) = z\r
+\r
+ ' Define the edges of the square\r
+ point1Vertex(edgeCount + 1) = vertexCount + 1\r
+ point2Vertex(edgeCount + 1) = vertexCount + 2\r
+ col(edgeCount + 1) = 14\r
+\r
+ point1Vertex(edgeCount + 2) = vertexCount + 2\r
+ point2Vertex(edgeCount + 2) = vertexCount + 3\r
+ col(edgeCount + 2) = 14\r
+\r
+ point1Vertex(edgeCount + 3) = vertexCount + 3\r
+ point2Vertex(edgeCount + 3) = vertexCount + 4\r
+ col(edgeCount + 3) = 14\r
+\r
+ point1Vertex(edgeCount + 4) = vertexCount + 4\r
+ point2Vertex(edgeCount + 4) = vertexCount + 1\r
+ col(edgeCount + 4) = 14\r
+\r
+ ' Update the counters for the next square\r
+ vertexCount = vertexCount + 4\r
+ edgeCount = edgeCount + 4\r
+\r
+END SUB\r
+\r
+SUB start\r
+\r
+ ' Initialize the screen and clear it\r
+ SCREEN 12\r
+ CLS\r
+\r
+ ' Set the initial color of all shapes\r
+ FOR a = 1 TO 4000\r
+ col(a) = 15\r
+ NEXT a\r
+\r
+ ' Initialize counters for vertices and edges\r
+ vertexCount = 0\r
+ edgeCount = 0\r
+\r
+ ' Generate the initial set of shapes\r
+ getCornerVertices\r
+\r
+END SUB\r